

CONVERGENCE ANALYSIS FOR ENERGY CONSUMPTION PER CAPITA AMONG HIGH-INCOME OECD COUNTRIES

Ercan Sarıdoğan*

* Istanbul University, Istanbul, Turkey, e-mail: ercan.saridogan@istanbul.edu.tr

Copyright © 2017 Ercan Sarıdoğan this is an open access article distributed under the Eurasian Academy of Sciences License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In this study we explored the convergence analysis for energy consumption per capita among high income OECD countries for the period 1960-2015 with annual data by using the panel unit root test developed by Carrion-i- Silvestre et al (2005) and Carrion-i- Silvestre (2005). In the study, we find evidence for the convergence of energy consumption per capita among high-income OECD countries in both individual country level and panel level.

Keywords: Convergence, OECD countries, Panel unit root test

JEL: 047, Q43, Q48

G-7 ÜLKELERİ İÇİN SATIN ALMA GÜCÜ PARİTESİNİN GEÇERLİLİĞİNİN TEST EDİLMESİ

ÖZET

Bu çalışmada, yüksek-gelirli OECD ülkelerinde kişi başına enerji tüketimi için yakınsama analizi, 1960-2015 dönemi yıllık verileri ve Carrion-i- Silvestre et al (2005) tarafından geliştirilen panel birim kök testi kullanılarak incelenmiştir. Çalışma sonucunda, yüksek-gelirli OECD ülkeleri için hem bireysel ülke hem de panel düzeyinde kişi başına enerji tüketimi için yakınsama hipotezinin geçerli olduğu bulunmuştur.

Anahtar Kelimeler: Yakınsama, OECD ülkeleri, Panel birim kök testi

1. Introduction

Energy is vital input for production function to achieve outputs needed the society. As the economies develop, energy intensities decline by improving energy efficiency because of the sophistication of the both energy consumption and energy supply patterns. Main driver of economic growth shifts from individual the production factors to total factor productivity (see Meng et al, 2013).

In this study, stochastic conditional convergence analysis is used for the convergence analysis of energy consumption per capita among high income OECD countries for the period 1960-2015 with annual data by using the panel unit root test developed by Carrion-i-Silvestre et al (2005) and Carrion-i-Silvestre (2005), allowing multiple structural breaks in the mean and/or the trend of the individual time series and the cross-section dependence as well.

The framework of the study is as follows. Section 2 analysis the literature. Section 3 provides the data and methodology. Section 4 covers empirical results and conclusion given in Section 5.

2. Literature Review

Table-1 shows the selected literature on the convergence analysis for energy consumption. The results in the literature mostly support convergence for energy consumption. (see Table-1.)

Table-1. Selected Literature on Convergence For Energy Consumption							
Author(s)	Year	Method	Findings				
Mohamm adi and Ram	2017	Regression and panel unit-root tests	1970 – 2013	the US states	Lack of convergence		
Herrerias et al	2017	Panel Regression	1995- 2011	Chinese regions	Convergence		
Parker and Liddle	2017	Clustering algorithm	1971 - 2008	33 countries	Mixed Results		
Mishra and Smyth	2017	Unit-root tests	1973 – 2014	Australia	Convergence		
Payne et al	2017	LM and RALS-LM unit root tests	1970 – 2013	the US states	Convergence		

23

Table-1. Selected Literature on Convergence For Energy Consumption							
Author(s)	Year	Method	Period Country(ies		Findings		
Wan et al	2015	Regression	1995 – 2005	European Union	Convergence		
Li and Lin	2015	Meta- frontier	1997 – 2011	Chinese regions	Negative effects		
Fallahi and Voia	2015	Unit-root tests	1960 – 2012	OECD countries	Mixed Results		
Mishra and Smyth	2014	Panel unit- root tests	1971 – 2011	ASEAN	Convergence		
Herrerias	2013	Panel regressions	1980 – 2009	the US states	Mixed Results		
Meng et al	2013	Panel unit- root tests	1960 – 2010	OECD	Convergence		
Herrerias	2012	Dynamic of the distribution approach.	1971 – 2008	83 countries	Convergence		
Jakob et al	2012	Panel regression	1971 – 2005	53 Countries	Convergence		
Ma and Oxley	2012	Regression	1970 – 2013	China	Convergence		
Mulder and Groot	2012	Regression	1970 – 2015	OECD	Mixed Results		
Mohamm adi and Ram	2012	Regression	1971 – 2007	World	Mixed Results		
Le Pen and Sevi	2010	Panel unit- root tests	1971 – 2003	World	Mixed Results		
Ma et al	2009	Panel unit- root tests	1995– 2005	China	Convergence		
Markandy a	2006	Regression	1992– 2002	EU, Eastern Europe	Convergence		
Miketaa and Mulder	2005	Regression	1971 – 2005	56 countries	Local Convergence		

3. Data and Methodology

In this study, we used the data for high income OECD countries for the period 1960-2015 with annual data from the OECD database by using the panel unit root test developed by Carrion-i- Silvestre et al (2005) and Carrion-i- Silvestre (2005). For each country i, the natural logarithm of the ratio of per capita energy use (PCEU) relative to the average of all OECD countries is used as follows:

$$y_{it} = ln(PCEU_{it}/\overline{PCEU_t})$$
(1)

The methodology used is the panel unit root test (PANKPSS) developed by Carrion-i-Silvestre et al (2005) and Carrion-i- Silvestre (2005), allowing multiple structural breaks in the mean and/or the trend of the individual time series and the cross-section dependence as well by following model, also for testing null hypothesis, modified and normalized the KPSS LM test statistics assuming homogeneity and heterogeneity of long-run variance (see also Güloğlu et al, 2011),

 $y_{it} = \alpha_{it} + \beta_i t + \varepsilon_{it}$

$$\alpha_{it} = \sum_{k=1}^{m_i} \theta_{i,k} D(T_{b,k}^i)_t + \sum_{k=1}^{m_i} \gamma_{i,k} DU_{i,k,t} + \alpha_{i,t-1} + v_{i,t}$$
(2)

where $v_{i,t} \sim i. i. d. (0, \sigma_{u,i}^2)$ and $\alpha_{i,0} = \alpha_{i,}$, a constant, with i = 1, ..., N individuals and t = 1, ..., T time periods. The dummy variables defined as $D(T_{b,k}^i)_t = 1$ for $t = T_{b,k}^i + 1, 0$ elsewhere and $DU_{i,k,t} = 1$ $t > T_{b,k}^i, 0$ elsewhere; $T_{b,k}^i$, is the date of the *k*th break for the *i*th individual, $k = 1, ..., m_i, m_i \ge 1$. The null hypothesis and one-sided alternative hypothesis: $H_0: \sigma_{u,i}^2 = 0, \forall i = 1, 2, ..., N$; $H_A: \sigma_{\varepsilon,i}^2 = 0, i = 1, 2, ..., N$

4. Empirical Results

In order to analyze stationarity of the y_{it} , first, we tested the significance of cross-sectional correlations by using CDLM tests developed by Pesaran (2004). Table-2 shows that the cross-sectional correlations are significant.

Table-2. Cross-section dependence tests results								
Breusch-Pagan LM		Bias-corrected scaled LM						
Test statistic	Probability	Test statistic	Probability					
3514.144	0.0000	179.5764	0.0000					

Table-2. Cross-section dependence tests results

For this reason, we use the PANKPSS test considering cross-section-dependence problem and multiple structural breaks. Table-3 shows that the individual KPSS statistics for the intercept-no trend. All of the test statistics both in Panel A: Panel individual KPSS test and Panel B: Panel KPSS tests for the whole of panel are less than the critical values, meaning

25

the null hypothesis of stationarity cannot be rejected. Based on the empirical results, we claimed that we find evidence for the convergence of energy consumption per capita among high-income OECD countries in both individual country level and panel level.

Country	KPSS	т	$T_{b,l}$	$T_{b,2}$	$T_{b,3}$	$T_{b,4}$	Finite sample critical values		le
							0.90	0.95	0.99
Australia	0.043	2	1967	2006			0.109	0.14	0.216
Canada	0.081	2	1968	1989			0.118	0.154	0.251
Italy	0.049	2	1967	1994			0.103	0.127	0.195
Norway	0.083	3	1975	1983	2007		0.104	0.117	0.172
Austria	0.058	2	1978	2002			0.113	0.148	0.235
Denmark	0.074	3	1972	1980	1998		0.116	0.152	0.232
Finland	0.092	3	1967	1979	2001		0.084	0.106	0.18
Germany	0.039	3	1969	1990	1998		0.118	0.152	0.243
Japan	0.109	2	1967	1989			0.118	0.149	0.235
N.Zealand	0.063	3	1967	1982	2007		0.089	0.113	0.185
Portugal	0.087	4	1970	1979	1988	1997	0.117	0.155	0.234
Belgium	0.126	3	1980	1993	2001		0.111	0.149	0.231
France	0.059	2	1969	1982			0.097	0.128	0.221
Netherlands	0.056	2	1968	1980			0.104	0.131	0.215
Switzerland	0.18	2	1979	1994			0.111	0.145	0.224
UK	0.102	4	1967	1975	1996	2006	0.123	0.161	0.243
US	0.068	4	1969	1979	1989	2000	0.109	0.149	0.233
Sweden	0.035	1	1996				0.093	0.122	0.199
Spain	0.048	4	1967	1975	1988	1997	0.118	0.156	0.252

Table-3. Panel KPSS test: intercept-no trend

Panel A: Panel individual KPSS test and dates of structural breaks

Panel B: Panel KPSS tests for the whole of panel

Model	Test statistic	Asy Cv 0.90	Asy Cv 0.95	Asy Cv 0.99	Boot Cv 0.90	Boot Cv 0.95	Boot Cv 0.99
Breaks	1.159 (0.123) ^{hom}	1.389	1.705	2.510	1.39 ^{hom}	1.71 hom	2.51 hom
Breaks	2.220 (0.013) ^{het}	2.600	3.155	4.364	2.60 ^{het}	3.12 ^{het}	4.36 ^{het}

5. Conclusion

In this study we explored the convergence analysis for energy consumption per capita among high income OECD countries for the period 1960-2015 with annual data by using the panel unit root test developed by Carrion-i- Silvestre et al (2005) and Carrion-i- Silvestre (2005). In the study, we find evidence for the convergence of energy consumption per capita among high-income OECD countries in both individual country level and panel level.

As the economies develop, energy intensities decline by improving energy efficiency because of the sophistication of the both energy consumption and energy supply patterns. Main driver of economic growth shifts from individual the production factors to total factor productivity. In this context, energy policies should design such that maximizing energy efficiency in order to achieve sustainable economic growth and development.

REFERENCES

- Anil Markandya, Suzette Pedroso-Galinato, Dalia Streimikiene, Energy intensity in transition economies: Is there convergence towards the EU average?, In Energy Economics, Volume 28, Issue 1, 2006, Pages 121-145,
- Asami Miketa, Peter Mulder, Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence, In Energy Economics, Volume 27, Issue 3, 2005, Pages 429-453,
- Bulent Guloglu, Serdar Ispir, Deniz Okat, Testing the validity of quasi PPP hypothesis: evidence from a recent panel unit root test with structural breaks, Applied Economics Letters, Volume 18, Issue 18, Pages 1817-1822,
- Firouz Fallahi, Marcel-Cristian Voia, Convergence and persistence in per capita energy use among OECD countries: Revisited using confidence intervals, In Energy Economics, Volume 52, Part A, 2015, Pages 246-253,
- H. Pesaran, General diagnostic tests for cross section dependence in panels, Working Paper No. 0435, 2004, University of Cambridge, Cambridge, UK
- Hassan Mohammadi, Rati Ram, Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods, In Energy Economics, Volume 62, 2017, Pages 404-410,
- Hassan Mohammadi, Rati Ram, Cross-country convergence in energy and electricity consumption, 1971–2007, In Energy Economics, Volume 34, Issue 6, 2012, Pages 1882-1887,
- Hengyun Ma, Les Oxley, John Gibson, Gradual reforms and the emergence of energy market in China: Evidence from tests for convergence of energy prices, In Energy Policy, Volume 37, Issue 11, 2009, Pages 4834-4850,
- Hengyun Ma, Les Oxley, The emergence and evolution of regional convergence clusters in China's energy markets, In Energy Economics, Volume 34, Issue 1, 2012, Pages 82-94,

Eurasian Business & Economics Journal 2017, Volume: 8

- James E. Payne, Maruška Vizek, Junsoo Lee, Stochastic convergence in per capita fossil fuel consumption in U.S. states, In Energy Economics, Volume 62, 2017, Pages 382-395,
- Jun Wan, Kathy Baylis, Peter Mulder, Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries, In Energy Economics, Volume 48, 2015, Pages 253-264,
- Ke Li, Boqiang Lin, Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China, In Energy Economics, Volume 48, 2015, Pages 230-241,
- M.J. Herrerias, Carlos Aller, Javier Ordóñez, Residential energy consumption: A convergence analysis across Chinese regions, In Energy Economics, Volume 62, 2017, Pages 371-381,
- M.J. Herrerias, The environmental convergence hypothesis: Carbon dioxide emissions according to the source of energy, In Energy Policy, Volume 61, 2013, Pages 1140-1150,
- M.J. Herrerias, World energy intensity convergence revisited: A weighted distribution dynamics approach, In Energy Policy, Volume 49, 2012, Pages 383-399,
- Michael Jakob, Markus Haller, Robert Marschinski, Will history repeat itself? Economic convergence and convergence in energy use patterns, In Energy Economics, Volume 34, Issue 1, 2012, Pages 95-104,
- Ming Meng, James E. Payne, Junsoo Lee, Convergence in per capita energy use among OECD countries, In Energy Economics, Volume 36, 2013, Pages 536-545,
- Peter Mulder, Henri L.F. de Groot, Structural change and convergence of energy intensity across OECD countries, 1970–2005, In Energy Economics, Volume 34, Issue 6, 2012, Pages 1910-1921,
- Steven Parker, Brantley Liddle, Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries, In Energy Economics, Volume 62, 2017, Pages 338-346,
- Vinod Mishra, Russell Smyth, Conditional convergence in Australia's energy consumption at the sector level, In Energy Economics, Volume 62, 2017, Pages 396-403,
- Vinod Mishra, Russell Smyth, Convergence in energy consumption per capita among ASEAN countries, In Energy Policy, Volume 73, 2014, Pages 180-185,
- Yannick Le Pen, Benoît Sévi, On the non-convergence of energy intensities: Evidence from a pair-wise econometric approach, In Ecological Economics, Volume 69, Issue 3, 2010, Pages 641-650,